A TSK-Type Quantum Neural Fuzzy Network for Temperature Control

نویسندگان

  • Cheng-Jian Lin
  • Cheng-Hung Chen
  • C. Y. Lee
چکیده

In this paper, a TSK-type quantum neural fuzzy network (TQNFN) for temperature control is proposed. The TQNFN model is a five-layer structure, which combines the traditional Takagi-Sugeno-Kang (TSK). Layer 2 of the TQNFN model contains quantum membership functions, which are multilevel activation functions. Each quantum membership function is composed of the sum of sigmoid functions shifted by quantum intervals. A self-constructing learning algorithm, which consists of the self-clustering algorithm (SCA) and the backpropagation algorithm, is also proposed. The proposed the SCA method is a fast, one-pass algorithm for a dynamic estimation of the number of clusters in an input data space. The backpropagation algorithm is used to tune the adjustable parameters. Simulation results have been given to illustrate the performance and effectiveness of the proposed model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive TSK - Type Fuzzy Network Control for Synchronization of a Coupled Nonlinear Chaotic System

This paper proposes an adaptive TSK-type fuzzy network control (ATFNC) system for synchronization of a coupled nonlinear chaotic system. The design of the proposed ATFNC system is comprised of a neural controller and a fuzzy compensator. The neural controller uses a Takagi-Sugeno-Kang (TSK)-type fuzzy neural network (TFNN) to online mimic an ideal controller and the fuzzy compensator is designe...

متن کامل

Gas Flow Metering Using the PSO Optimized Interval Type- 2 Fuzzy Neural Network

Orifice flow meter is one of the most common devices in industry which is used for measuring the gas flow. This system includes an orifice plate, temperature and pressure transmitters, and a flow computer. The flow computer is used for collecting information related to temperature, pressure, and their differences under various conditions. Also the flow computer can calculate the flow rate of ga...

متن کامل

A New Recurrent Fuzzy Neural Network Controller Design for Speed and Exhaust Temperature of a Gas Turbine Power Plant

In this paper, a recurrent fuzzy-neural network (RFNN) controller with neural network identifier in direct control model is designed to control the speed and exhaust temperature of the gas turbine in a combined cycle power plant. Since the turbine operation in combined cycle unit is considered, speed and exhaust temperature of the gas turbine should be simultaneously controlled by fuel command ...

متن کامل

A Neuro-Fuzzy Controller for Rotary Cement Kilns

In this paper, we design a neurofuzzy controller to control several variables of a rotary cement kilns. The variables are back-end temperature, pre-heater temperature, oxygen content and CO2 gas content of the kiln. The fuzzy control system, as an advanced control option for the kilns, is intended to minimize the operator interaction in the control process. The proposed fuzzy controller uses a ...

متن کامل

A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms

In this paper, a TSK-type recurrent fuzzy network (TRFN) structure is proposed. The proposal calls for a design of TRFN by either neural network or genetic algorithms depending on the learning environment. Set forth first is a recurrent fuzzy network which develops from a series of recurrent fuzzy if–then rules with TSK-type consequent parts. The recurrent property comes from feeding the intern...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005